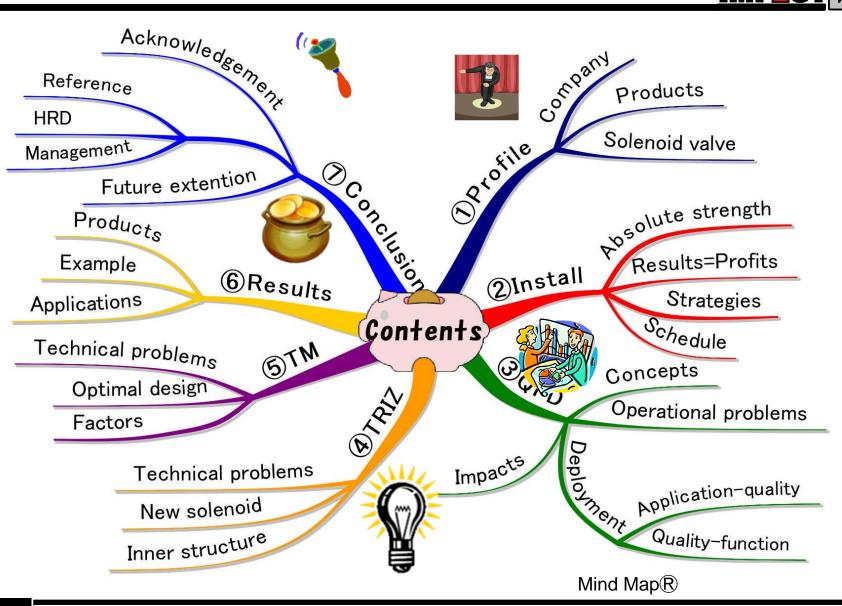
Case Study of Introducing and Applying TRIZ to Real Projects for Obtaining Results (= Profits) (Part 2):


Having Used QFD - TRIZ - TM, What are the Results?

Tomohiko Katagiri, Toshiaki Tsuchisawa, and Shuichi Hosaka (Koganei Co., Ltd.)

English translation: Toru Nakagawa (Osaka Gakuin Univ.)

Contents

1 Company Profile

● Name: Koganei Corporation

● Established: Feb. 7, 1934

Capital: 640 M yen

● Employees: 750

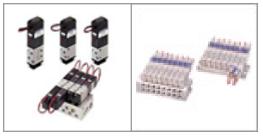
Sales: 22.9 B yen (2007 FY)

Business areas:


Aeropneumatic equipments and

related products: manufacturing & sales

● Fluororesin products: manufacturing & sales


Integrated lubrication systems: manufacturing

Electrostatic equipment, electrical equipment, fluid control equipment, etc.: manufacturing & sales http://www.koganei.co.jp/en/

(1) Product Line Out

Air valves

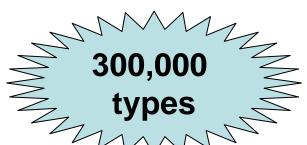
Air cylinders

Vacuum devices & pads

Regulators, **Filters**

Electric actuators

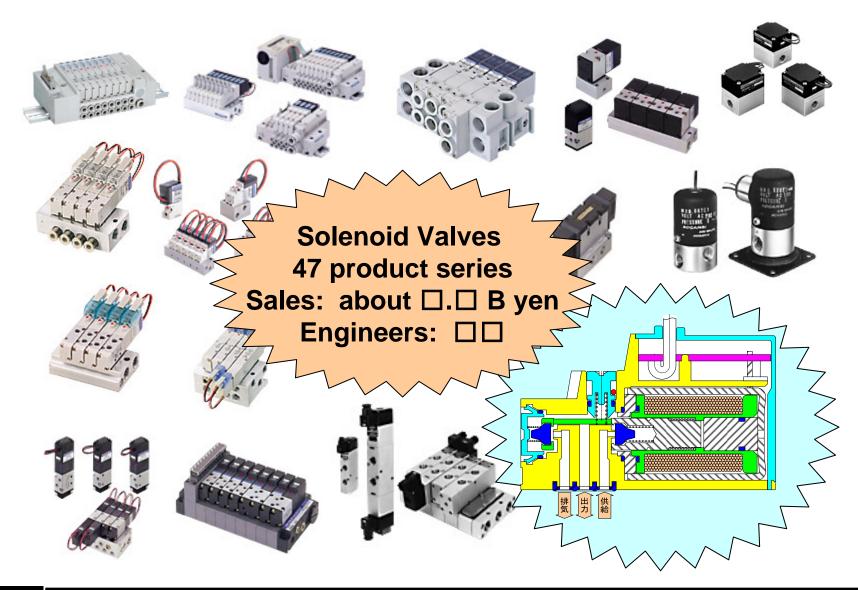
Static electricity removing unit


Fluororesin equipments

Constant delivery pump

Fluid control equipments

speed controllers


Clean system equipments

Education Kits, **Books**

① Solenoid Valves

2 Introduction: Establishing "Absolute Strength"

. <u>IMPÅCT</u>[//

[Our Goal] • • • Establishing "Absolute Strength"

Continually supply differentiated products which provide our customers with profits. ••--> 3 Schemes for achieving the goal.

1. Recognize the real essence of customers' requirements and meet with customers' satisfaction

- Evaluating customers' requirements with Kano Method.
- Planning the products which surely sell well.
- Sharing information and language among divisions and customers.

2. Generating unique solutions

- Unrivaled competitiveness and no compromised solutions
- Achieving goal requirements without compromise
- Communication language among engineers

3. Minimizing the risks for new unique solutions

- Preventive verification for new technologies and solutions
- Reducing the required R&D period
- Accumulating design know-how and sharing knowledge

2 Introduction: Achieving "Results = Profits" IMPACT 1/2

Changes in business environments

- Higher risks in new product development --> new products with less risks
- Changing employment styles --> 'Outsourcing and temporary employment in place of educating ...'

Changes in engineers

- 'Performance and goal management' --> Avoiding high risks
- Market saturation --> Sales saturation --> sense of stagnation

Conventional ways

- 'We learned much, thanks.'
- 'We would like to use the method in future product development.'
- 'We have filed a number of patents.'
 - 'We have evaluated the impact as xxx Million yen.'

Hence, we

2 Introduction: Our Strategy

Not only TRIZ but also QFD and TM (Taguchi Method):

Apply to the whole process of R&D. --> Optimize as a whole.

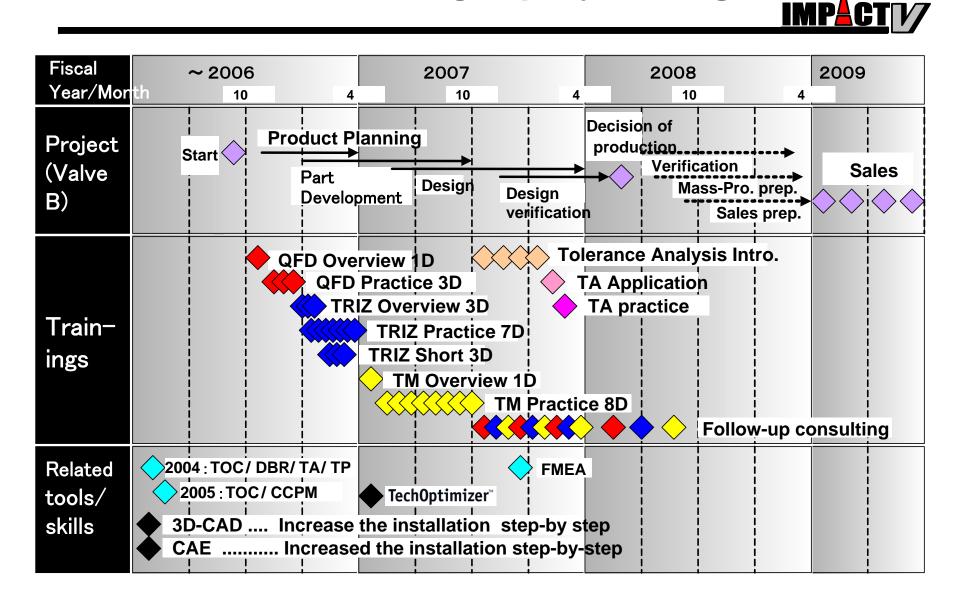
Have applied to 3 real on-going projects:

Training schedule is synchronized with the project development.

2 projects: development of valves; 1 project: thermal refining equipment

Related divisions, related tools and methods:

Reorganized and implemented in synchronous to the projects.


The new products should have Results (= Profits) in 3 years from the start of the projects.

==> Verify the effectiveness.

Requested the consulting by one instructor all the way through QFD -> TRIZ -> TM -> Results.

A team of common fate and work for the same target.

2 Introduction: Training & projects together

3 QFD: Concepts of Products which surely sell well

③ QFD: Problems in Practice

QFD: Problems in constructing the Quality Table

Voice of Customers (20,000 voices)

- Purpose of use
- Functions/ Performance
- Business area

Different marketing

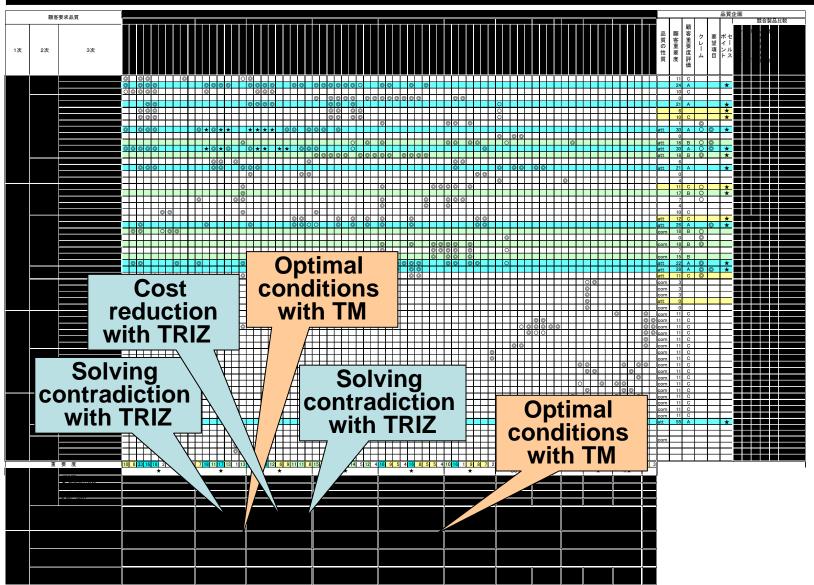
- Customers
- Regions
- Industries

Different situations

- Competitive proposal
- Reasons for unacceptance
- Marketing decisions

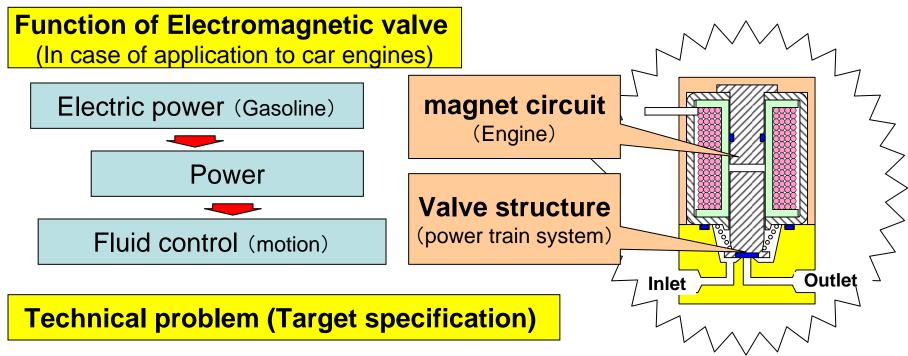
- Higher performance than competitors
- Higher quality
- Plenty of variations
- And yet 【Lower price by 30 % than competitors】
- Difficult to focus the target customers
- Difficult to decide the priorities
- Difficult to make the well-focused specifications

- Unfocused products
- Abstract & vague target customers
- Specifications without clear focus


③ QFD: Application - Quality Deployment

Needs (usag	Customer quality requirement Functionality basic Stability						Market Evaluation								
Purpose	Usage, Process, Equipments	Object	Quick start	Quick			Siliali vallation				volume of use	importance	areas of use	extensibility	attractiveness
											b	С	а	b	12
											a b	b	C	a h	14 8
		chip part	000					★ ◎	1		a	c a	c a	d a	20
	Extracting										a	a	a h	a a	18
5 "	a bad										a	а	b	a	18
Brow off											b	а	С	b	12
											a	b	а	b	16
											a	b	a	a	18
											С	b	а	С	10
											a	a	a	a	20
											b	b	a	b	14
											b	b	a	b	14
Customer quality requirement Evaluated importance General Target market			13 30 13 20					8 17			_				Ш
			7 15 7 20		12 (8 13		_					Ш
			CACA	BA	Α	CB	C	В	Α						Ш

③ QFD: Quality - Function Deployment


③ QFD: Effects of Introduction before the TRIZ Process

- While constructing the QFD tables, we can see we should sell what quality, to whom, and in which way.
- All the members of sales and development divisions decide together clear and convincing target specifications.
- We realize the importance and priorities of technical problems we must solve from now on.
- We must solve these problems by all means,
 even though no techniques and means are known so far.
 --> High motivation

Go ahead to TRIZ and TM

4 TRIZ Technical problems to be solved

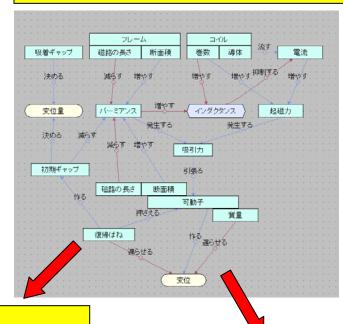
New solenoid structure, having large flow rate, high speed response, and yet low power consumption, and long duration

(==> New engine, having high power, high speed response, and yet low fuel cost, and long duration.)

New main valve structure which can extract max. features of the new solenoid. (==> New power train system which can extract max. features of the new engine.)

4 TRIZ: New solenoid structure

Target specification


Function-Attribute Analysis

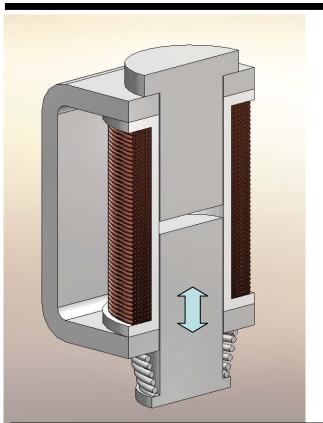
High-speed response

Large flow rate

Low power consumption

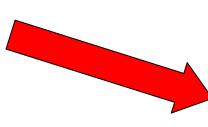
Long duration

TRIZ


Prediction, Principles, Effects, Trimming TM (Taguchi Method)

Optimized design

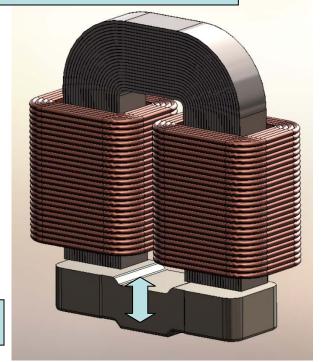
4 TRIZ: New Solenoid structure



Single cylinder --> Double cylinders

Extremely-short stroke

Directional electro-magnetic steel plates


Single layer --> 22 layers

Square frame "¬" --> "U" frame

"I" shape armature --> flat plate armature

no sliding motion

⑤ TM: Deployment to Taguchi Method (TM)

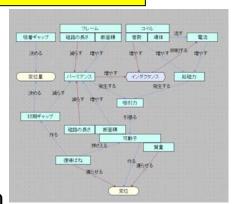
Technical Problem (Target specification)

New solenoid structure, having large flow rate, high speed response, and yet low power consumption, and long duration

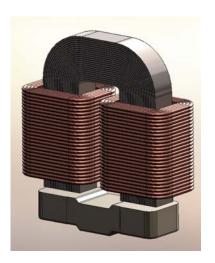
(==> New engine, having high power, high speed response, and yet low fuel cost, and long duration.)

New Horizon

- Unknown structure for us
- No experiences and know-how available or effective
- No expert existing
- Long period and high cost foreseen in the prototyping
- So many parameters to verify in the design


Target task: Optimal design of the new solenoid structure

- Want to find the optimal conditions as quickly as possible ...
- Verify the stability in the mass production


⑤ TM: Deployment to Taguchi Method (TM) IMP▲CT //

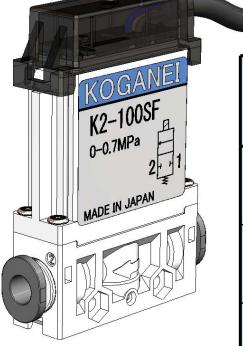
Task: Optimal design of the new solenoid structure

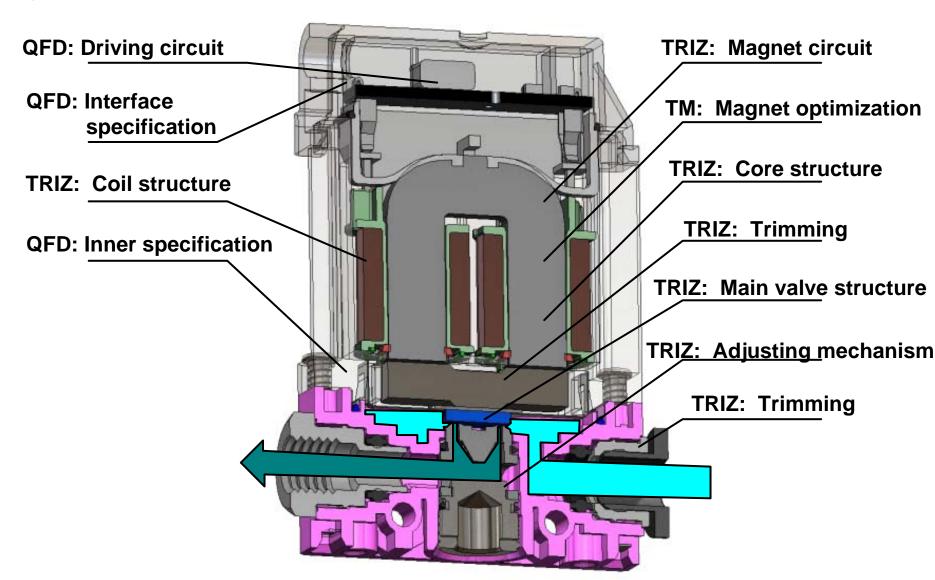
- 1. Analysis of the theme
 - Function-Attribute Analysis
- 2. Identify the target function
 - Function-attribute analysis --> Fishbone diagram

- 3. Identify the ideal function
 - $y = \beta M$, where y: effective work, M: power consumption
- 4. Identify various factors
 - error factors: accuracy in size, increasing temperature
 - control factors: design parameters, L18 orthogonal matrix

CAE: Simulation with Electromagnetic analysis software

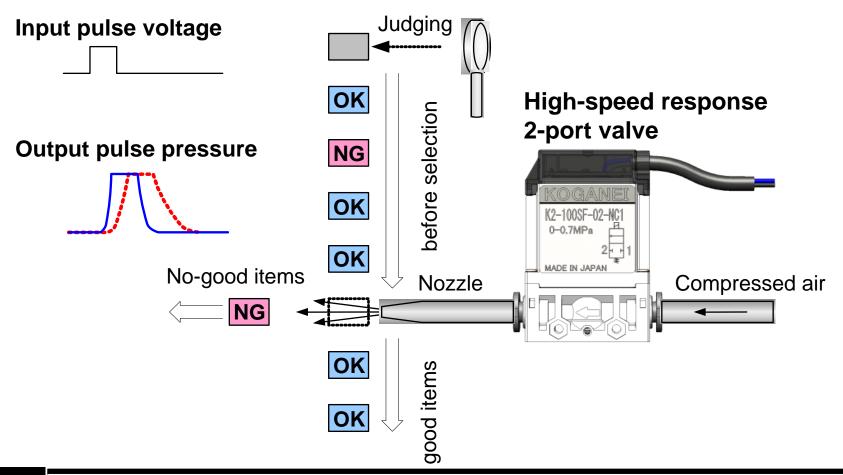
6 Results: New Products we developed





[Industry top performance]	【Comparison with our conventional products】
High-speed response	less than 1/2 in response time
Compact and large flow rate	over 3 times in flow rate
Low power consumption	less than 1/2 in electric power consumption

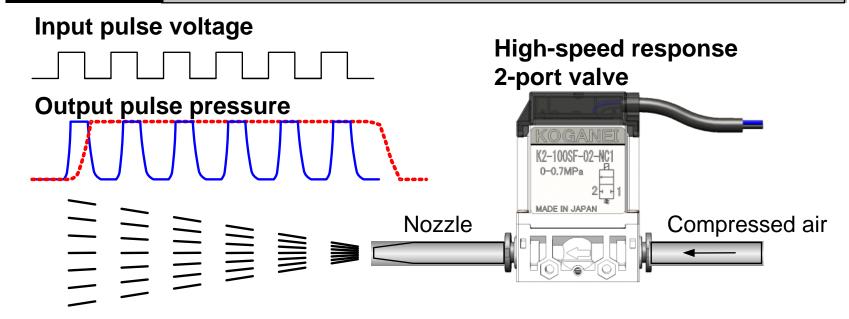
6 Results: Application examples



6 Results: Usage example of the product (1)

Selection process

High-speed response + Large flow rate--> Shorter tact time, Better selection accuracy


6 Results: Usage example of the product (2)

Blowing process

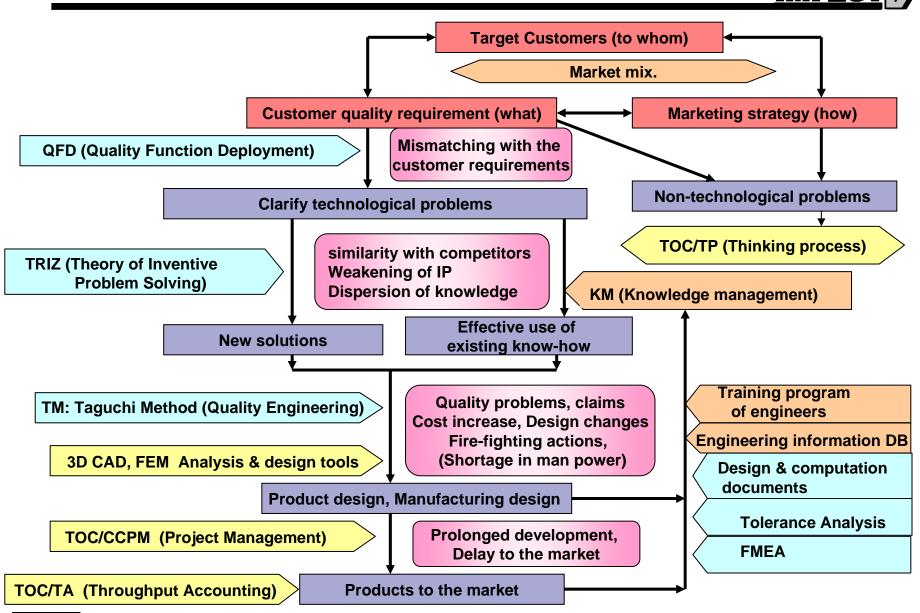
High-speed response + pulse drive

--> Better blowing effects, reduced air consumption

					Cost of	Electricity	cost savin	[ref]	[ref]		
	Nozzle	Area	Pressure	Flow rate	Comp. air	8 hr/d, 20d/	mo working	Electricity	Saving	Reduction	
	φ (mm)	(mm^2)	(MPa)	(m^3/h)	(¥/h)	(¥/h) 1/2 pulsing			power/yr	CO2/yr	
		(111111712)			¥2.5/m3	monthly	yearly	¥16/kWh	(kWh)	(ton)	
	0.8	0.5	0.4	1.69	4.2	338	4,052	0.26	253	0.7	
	1.1	1	0.4	3.38	8.4	675	8,104	0.53	507	1.4	
	1.6	2	0.4	6.75	16.9	1,351	16,209	1.06	1,013	2.8	
	2.0	3	0.4	10.13	25.3	2.026	24.313	1.58	1.520	4.3	

Sales situations

- Apr. 2009: Marketing research to a limited range of customers
- May 2009: Delivery of sample products for customer evaluation
- Jul. 2009: Sales to the open market
- Trade inquiries much larger in volume than the expected ones.--> Short in supply!


Extension of the product series

- New variants installing with pulse blowing circuit.-- Less air usage
- New variants installing with power saving circuit -- Less energy consumption
- Super high-speed response type -- Challenging ever.

Development of applications

- New applications with effective use of high-speed response.
- New aeropneumatic devices with effective use of high-speed response.
- New devices with effective use of high-speed response solenoid technology

⑦ Conclusion: Human resource development planIMP CT□

⑦ Conclusion: Aspects of Management

8 Steps for Innovation (John P. Cotter)

1. Raise the sense of crisis

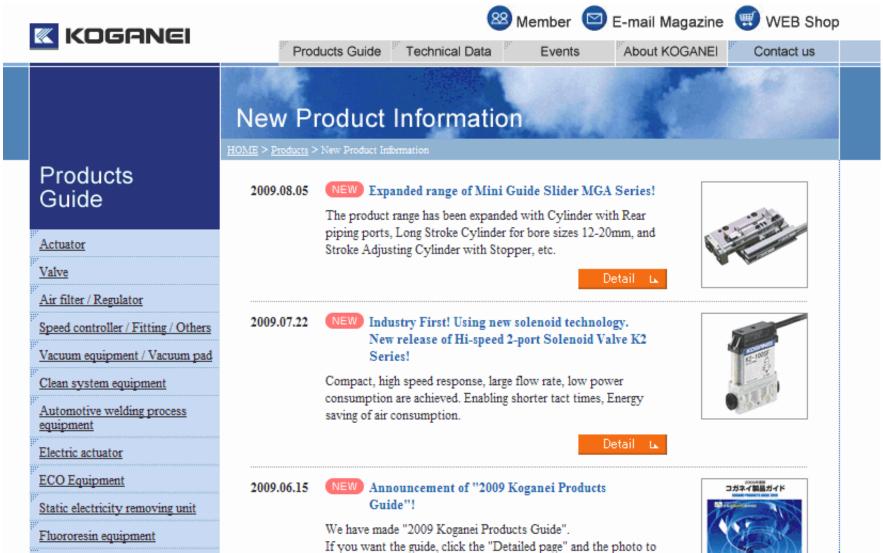
Kano method

2. Build the innovation team Mission of wild pikes

3. Create the vision and strategy QFD: Needs-quality deployment

4. Familiarize the vision for innovation QFD: Quality-function deployment

5. Encourage members voluntary actions TRIZ and TM


6. Achieve short-term success Sales of new products --> Profits

7. Promote further innovation Applying to other products

8. Establish the new ways Install in the production system

7) Conclusion: Reference

Acknowledgement

For introducing TRIZ to us: Mr. Masayasu Fujimori (PronoHearts)

For encouraging us to install: Mr. Mamoru Zenko (IDEA)

For instructing us in the team: Mr. Hajime Kasai (IDEA)

For many surprise chain: All the members involved

Thank you for your attention