The 10th TRIZ Symposium 2014 in Japan

Topics of research: Research on Improvement of Design Process

Department of Business Design and Management Graduate School of Creative Science and Engineering, Waseda University Guidance Prof. Manabu Sawaguchi

Yui Kato

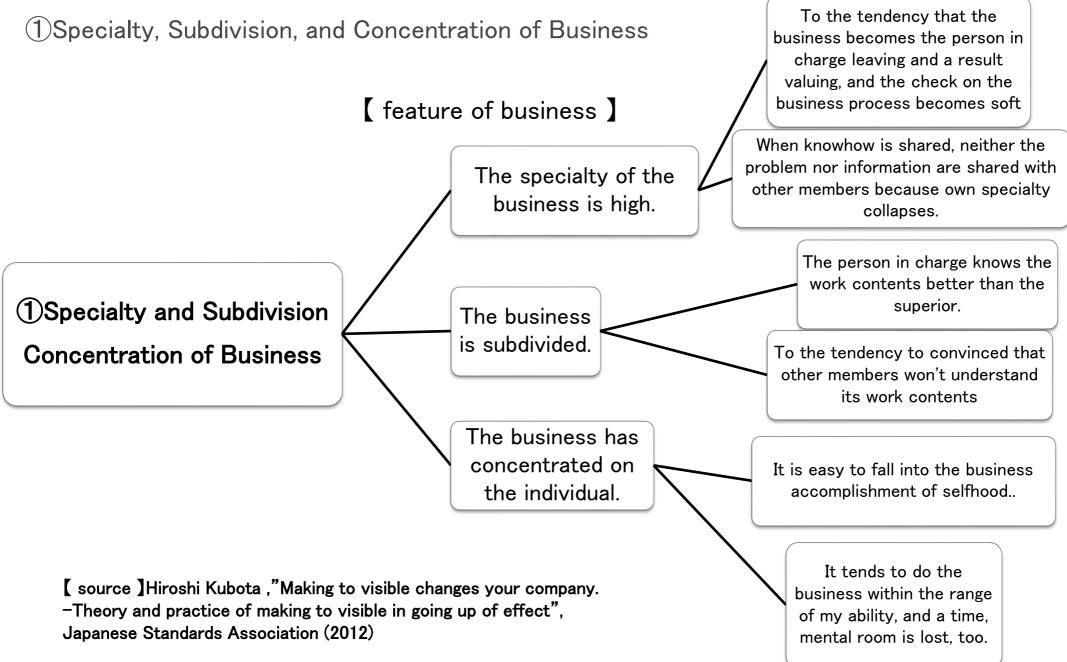
1

Background and Purpose

[Subject of current design business]

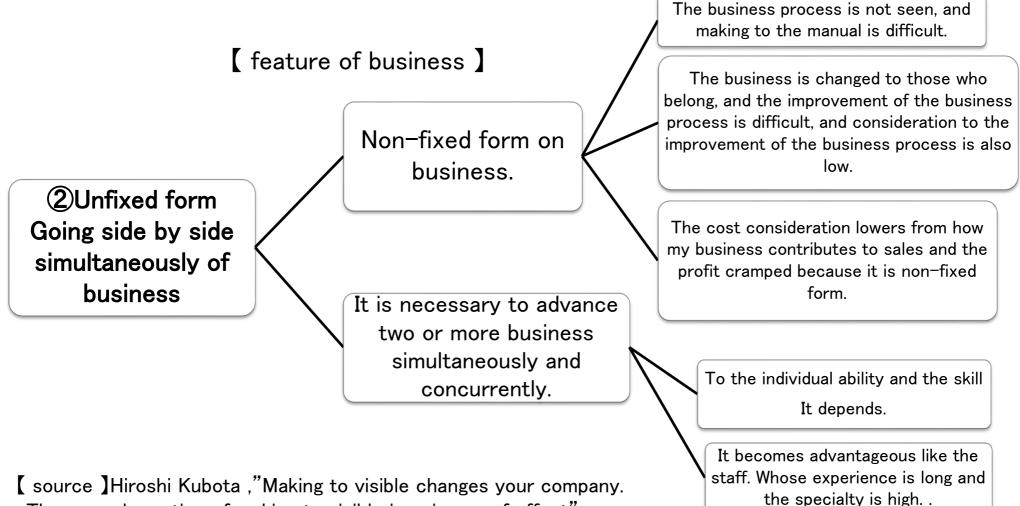
1 Specialty, subdivision, and concentration of business

2Unfixed form and going side by side simultaneously of business

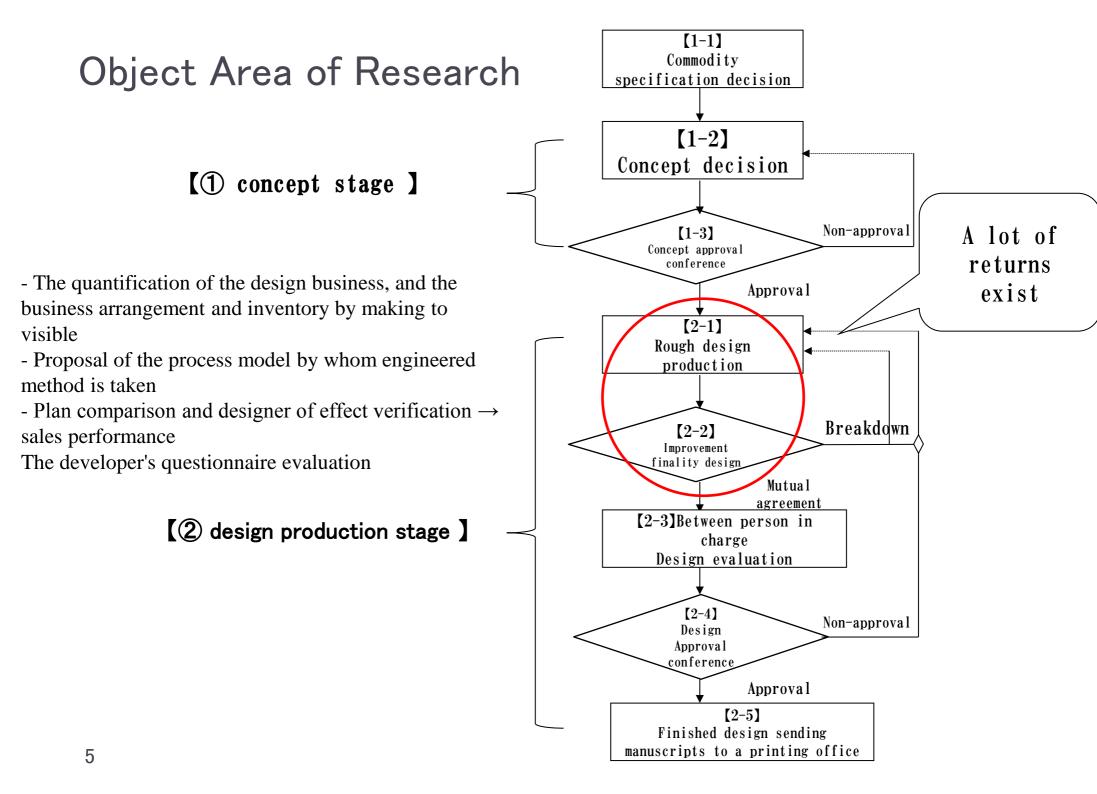

- The design process and the result are vagueness and a designer asunder individuals.
- It relies on designer's of some old-timers skill and tacit knowledge.
- Old-timer designer and young man's polarization environments
- Neither the design skill, the improvement and the solution pattern of the common manuals nor flow.

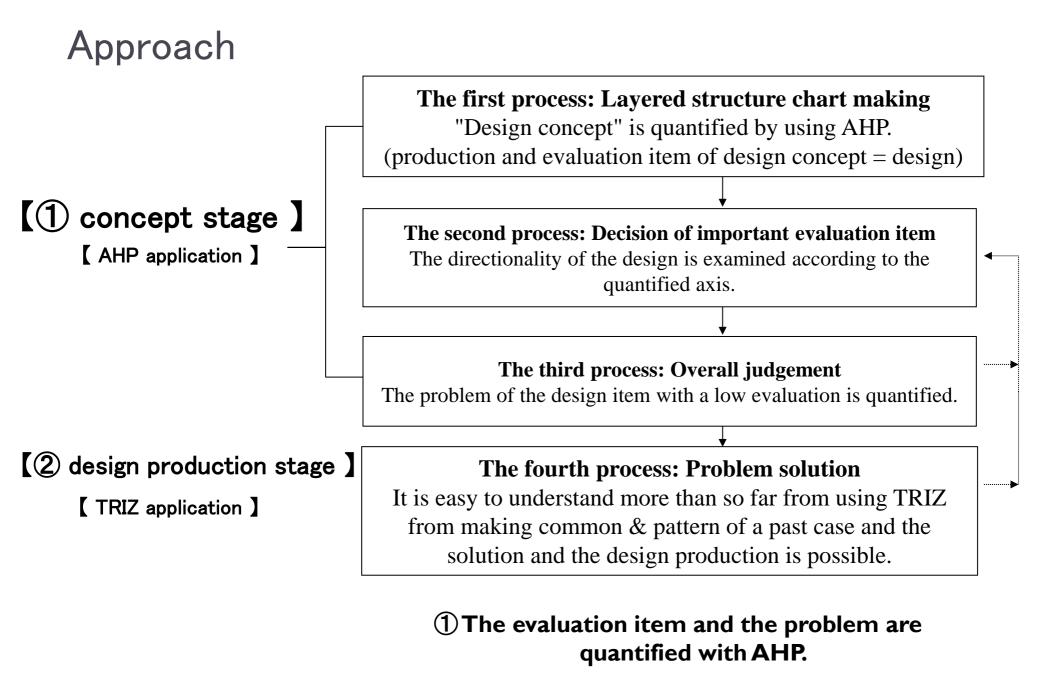
• Making partially of design business Black Box • Development belonging human that relies on individual's skill • Sharing of design skill (tacit knowledge)

[Purpose]


 \rightarrow It wants to make tacit knowledge organization wisdom by making the design business visible, and to contribute to the design improvement and the improvement of a special skill.

[problem of business]




(2)Unfixed Form and Going Side by Side Simultaneously of Business

[problem of business]

-Theory and practice of making to visible in going up of effect", Japanese Standards Association(2012)

 \rightarrow 2 The problem is solved with TRIZ.

Case 1: Long Seller Set Commodity New Lineup Design

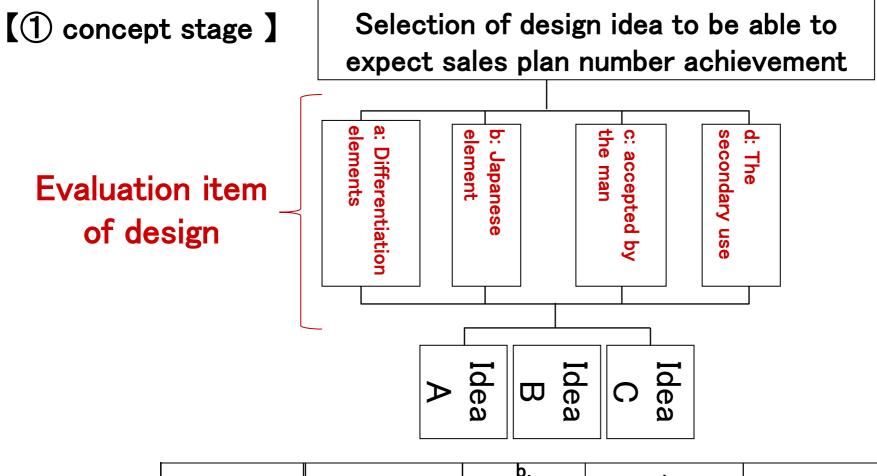
Evaluator: Old-timer skill designer

[procedure] [1] design concept stage]

<1> Hearing by the skill designer who is achieving the sales budget in the past as for the evaluation item.

<2> The element that becomes the evaluation item of design is clarified and consolidated in nine.

<3>Weight it by skill designer about nine elements (priority level).


(2) design production stage]

- <4> Design production of charge designer at current year based on the above-mentioned.
- <5> The design idea is evaluated agreeing among the developers.
- <6> The item with a low evaluation and the occurring design problem are quantified, and the improvement item is decided.
- <7> The design problem with a low evaluation is solved and the improvement idea is produced.

Case 2: Food Package Design

Evaluator: Career developer (The effectiveness of a different occupational category is verified).

[procedure] It does basically as well as the procedure of case 1.

Evaluation Criteria	a. Differentiation elements	b. Japanese elementes	d. c. The secndary Accepted use the man		
Priority	1th	2nd	3rd	4th	
Weit	0.590	0.238	0.123	0.049	

 \rightarrow The most important design concept is

"A: It decides it to the change feeling with another commodity".

(1) concept stage]

The most important design concept

a. It is a change feeling with another commodity, and the design production is done according to the axis.

(1) concept stage) Demand of design that became clear

"Five characters are taken to the layout."

→The contradiction problem that reproducibility deteriorates because the area that can be designed is small occurs.

(2) design production stage] The problem is solved by using TRIZ (design version contradiction matrix and inventive principle).

(2) design production stage]

[design version TRIZ] The parameter is classified into " $48 \rightarrow 21 \rightarrow 11''$ and it consolidates it.

	CHARACTERISTICS OF DESIGN					ORIGINAL CHARACTERISTICS
1	Shape of a design object	\leftarrow	Length of a stationary design object	←	4	Length of a stationary object
			Area of a stationary design object		6	Area of a stationary object
			Volume of a stationary design object		8	Volume of a stationary object
			Shape of design object		9	Shape
2	Harmful elements for design		Harmful elements for design		30	Harmful Emissions
			Design object Generated Side effects		31	Other harmful effects gnerated by system
3	Impact of design		Impact of design		15	Force/Torque
			Attractive		18	Power
					20	Strength
4	Color		Color		39	Aesthetics/appearance
5	Trend/Novelty		Trend/Novelty		18	Power
					39	Aesthetics/appearance
6	Creation time/Schedule		Creation time		21	Stability
			Schedule		26	Loss of time
					44	Productivity
7	Volume of design elements		Volume of design elements		10	Amount of substance
8	Design elements		Taste of design elements		25	Loss of substance
9	Quality of design		Quality of design		42	Accuracy of manufacturing
10	Persoicuity of design concept		Persoicuity of design concept		28	Loss of information
11	[©] 's original design elements		[©] 's original design elements		32	Adaotability/Connectability
					35	Reliability

(2) design production stage]

Design version TRIZ [contradiction matrix]

It improves it.

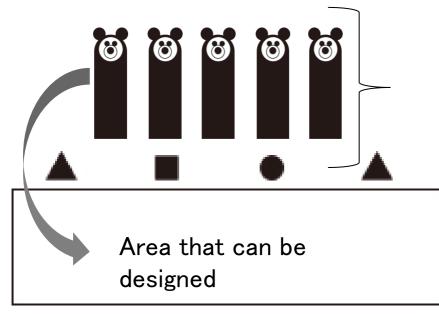
To "Amount of the design component" and "Area"

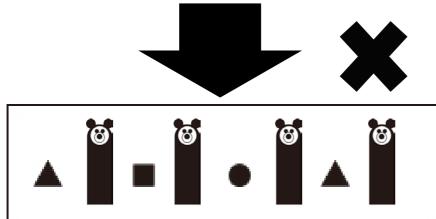
Refer to the problem settlement plan of a similar item.

		1		2	3	4
		3 0	ı S	d f e H	d o I	с
		Ь	h	e o l a	e f m	0
		jd	l a	srer	s p	1
		ee	e p	i mm	i a	0
		c s	e	g e f	g c	r
		ti		n nu	n t	
		ļ g	g o 🚽	t 1		
		n	f	s		
				1 3 13 35 17	10 17 35 3 19	3 17 32 7 1
1	Shape of a design object			11 5 7 40 24		26 22 5 35
T	Shape of a design object			15	37 9 12 28 6 30	
		17 14 4	24 3 15		10 3 15 35 28 4	17 7 10 5 2
2	Harmful elements for design	35 17 4	5 30 7		18 40 17 5	28 24
2	Harmful elements for design					
		35 28 17	3 40 10	15 2 35 5 3		14 3 7 12 2
3	Impact of design	14 4 19	25 15 7	13 24 14 1 19		15 22 17
3	Impact of design			18 28 40 10		
		17 14 15	4 28 32	4 28 15 35 2	3 28 7 4 15 14	
4	Color	1		13	32 9 17 40 2	
4	Color					
	Trend/Novelty	17 14 1	4 19 13	1 3 35 15 19	2 19 15 35 28	28 15 14 22
5		25 36 15	8 32 7 2	2 28 4 13	40 10 3 7 4 14	
5	Tiend/Inoventy				10 3 7 4 14 32	
					9 17 40	
				1 15 24 35 40		17 4 3 22 1
6	Creation time/Schedule			14 39 25 13 2		28 2 13 1
1			3	1.05.01.10.5	28 15 12 22	20.15.50
_	X. Land C. Landard Land	35 3 17 4	2 25 7 14	1 35 24 40 3	35 14 40 3 19	30 17 28 14
7	Volume of design elements			12	14 17 9	
8	Design elements	17 28 24 1	0 5 30 4 3	13 2 24 35 3	14 15 9 28 25 3	13 28 17 4
0	Design Cichiento	39		1 15 14	40	
				3 10 40 24 10	12 19 28 2 32	2 3 17 32 7
9	Quality of design	30	13	17 35 4	16317735	

(2) design production stage]

【design version inventive principle】 →2 and 17 are applied. 【use inventive principle】 → 2. Separation and extraction Taking out of "Unnecessary part or element" (removal and separation) of the design it.


 \rightarrow 17. Another dimension Let's make the design of the single-layer a combination of multilayer by the hierarchy and put out the depth and the depth.


	-	
DESIGN PRINCIPLES		ORIGINAL PRINCIPLES
1.Segmentation	<i>←</i>	1.Segmentation
2.Extration		2.Extration
3.Local quality		3.Local quality
4.Asymmetry		4.Asymmetry
5.Consolidation		5.Consolidation
6.Universality		6.Universality
7.Nesting(Matrioshka)		7.Nesting(Matrioshka)
8.Counterweight		8.Counterweight
9.Prior Counteration		9.Prior Counteration
10.Prior Action		10.Prior Action
11.Cushion in Advance		11.Cushion in Advance
12.Equipotentiality		12.Equipotentiality
13.Do it in Reverse		13.Do it in Reverse
14.Spheroidality		14.Spheroidality
15.Dynamicity	1	15.Dynamicity
16.Partrical or Excessive Action		16.Partrical or Excessive Action
17.Transition Into a New Dimension		17. Transition Into a New Dimension
18.Continuity of Useful Action		18.Merchanical Vibration
19.Convert Harm into Benefit	1	19.Periodic Action
20.Feedback	1	20.Continuity of Useful Action
21.Mediator		21.Rushing Through
22.Self Service		22.Convert Harm into Benefit
23.Copying	1	23.Feedback
24.Flexible Films or Thin Membranes	1	24.Mediator
25.Changing the Color	1	25.Self Service
26.Homogeneity		26.Copying
27.Rejecting and Regenerating Parts		27.Dispose
28.Transformation Properties	1	28.Replacement of Mechanical System
29.Inert Environment		29.Pneumatic or Hydraulic System
30.Composite Materials		30.Flexible Films or Thin Membranes
	_	31.Porous Materials
		32.Changing the Color
		33.Homogeneity
		34.Rejecting and Regenerating Parts
		35.Transformation Properties
		36.Phase Transition
		37.Thermal Expansion
		38.Accelerated Oxidation

39.Inert Environment 40.Composite Materials (2) design production stage)

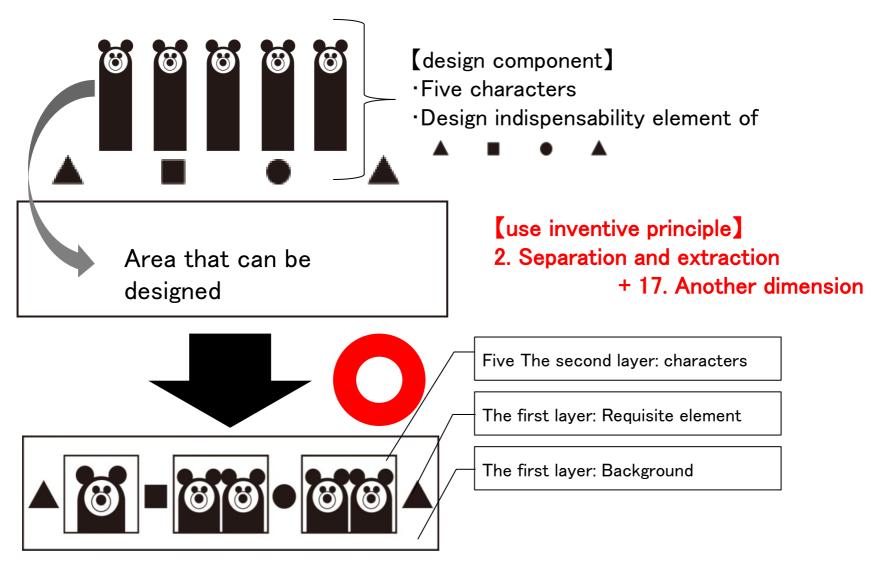
Demand of design:

Five characters are laid out.

- The design idea is abstract.

【 design component 】

·Five characters


 $\cdot \textsc{Design}$ indispensability element of

From the size that can be printed. It becomes small and the print collapsing happens. (2) design production stage)

Demand of design:

Five characters are laid out.

- The design idea is abstract.

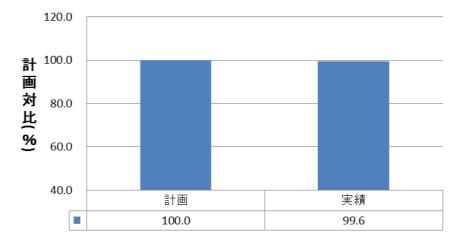
(2) design production stage]

The demand of the design was filled.

Color variation A, B and C idea from which it differentiated respectively were done and production and the evaluation were done.

Evaluation Criteria	a. Differentiation elements	b. Japanese elementes	d. The secndary use	c. Accepted by the man	
Priority	1th	2nd	3rd	4th	
Weit	0.590	0.238	0.123	0.049	Total
Α	0.411	0.172	0.081	0.034	0.441
В	0.063	0.017	0.010	0.006	0.178
С	0.116	0.048	0.032	0.009	0.379
Evaluation of A	1st	1st	1st	2nd	1st

 \rightarrow An idea became and the evaluations became high results most.


- Because the specification and the condition are different from the commodity in the past, the verification of a comparison by the time series and statistical effectiveness assumes the sales performance for impropriety.

Case 1: Plan ratio D-1: 116%, D-2: 84%, and D-3: 157%

Because the purchase layer had not become a transition of on schedule differing from an existing commodity for D-2, it became Ram. The amount was counterbalanced by D-3's having exceeded the plan and achieved the plan as a whole.

Case 2: 100% compared with plan

- 100% is not exceeded for a certain period only for the stock of sales.

The manufacturer returned goods rate of the wound and defective goods such as dirt is 0.4%. Stockout of early stage of sales more than plan

 \rightarrow Cases 1 and 2 and sales plan achievement

Result of the Questionnaire

[question item]

- i . About the return of the design production work goods
- ii . About sharing the solution pattern of the design problem
- iii. About the foothold to provide designer's improving direction
- iv. Whether the understanding of this approach is possible at time that the load is not put on the current operation about
- **v** . About mutual understanding of the word and the process with the designer

[respondent]

(seven development persons in charge) Executive job 1 (section chief of design group) Executive job 2 (those who approve design) Career-track job 1 (person in charge of brand management) Career-track job 2 (career-track job in charge of case 1) Career-track job 3 (career-track job in charge of case 2) Designer 1 (designer chief) Designer 2 (designer in charge of cases 1 and 2)

Consideration

The evaluation item of the design and the individual's production intention were quantified, and making the evaluation item and the design problem solution process that led to the design improvement visible became possible.

Future Tasks

1. About the ascertainment of a commodity for which the approach in the present study is suitable and a commodity not so

2. About the consensus building of the evaluation of AHP

3. About the operation method in the business of design version TRIZ

Reference Literature

[1] Hiroshi Kubota, Tetsu Sera, Nobuo Tab, Kazuhiro Hukuhara, Yoshiumi Inoue, "Making to Visible Changes your Company – Theory and Practice of Making to Visible in Going up of Effect", Japanese Standards Association (2012)

[2] Kazushiro Nakamoto, Kenta Ono, Makoto Watanabe, Kiyohito Yokouti, Shinji Watanabe: "Proposal of Method of Evaluating Interface Based on Agreement with Design Concept", Japanese Society for the Science of Design (2009)

[3] Ikuo Yamada: "Illustrative TRIZ", Japanese Business Publisher (1999)

[4] Tsukasa Shinohara "TRIZ is Applied to the Technological Opportunities of 50 a Year or More at Samsung", Nikkei Business (2001)

[5] Amir Roggel, "TRIZ Development at Intel Corporation", Japan TRIZ Symposium (2008)

[6] Setsuo Arita, Kazushi Tsuwako "Innovation Solution of Technological Opportunity by TRIZ Technique Use", Japanese Standards Association: Standardization and Quality Control Vol. 66, No.2 (2013)

[7] Mann, D. L., Dewulf, S., Zlotin, B., Zusman, A., "Matrix 2003: Updating The TRIZ Contradiction Matrix", CREAX Press (2003)

[8] William Lindwel "Design Rules Index Law of Design and New Centum", BNN New Company (2000)

[9] Hiroki Sato, Daiki Tanaka, Tsuyosi Homeno, Kouta Komukata: "Visual Feature Analysis of Product that Uses Hierarchical Analysis Method", Japanese Society for the Science of Design (2008)

[10] Katsuo Inoue: "Design and Sensibility", Kai Bun Do (2005)